In this paper, we introduce a new (constructive) characterization of tightwavelet frames on non-flat domains in both continuum setting, i.e. onmanifolds, and discrete setting, i.e. on graphs; discuss how fast tight waveletframe transforms can be computed and how they can be effectively used toprocess graph data. We start with defining the quasi-affine systems on a givenmanifold $\cM$ that is formed by generalized dilations and shifts of a finitecollection of wavelet functions $\Psi:=\{\psi_j: 1\le j\le r\}\subset L_2(\R)$.We further require that $\psi_j$ is generated by some refinable function $\phi$with mask $a_j$. We present the condition needed for the masks $\{a_j: 0\lej\le r\}$ so that the associated quasi-affine system generated by $\Psi$ is atight frame for $L_2(\cM)$. Then, we discuss how the transition from thecontinuum (manifolds) to the discrete setting (graphs) can be naturally done.In order for the proposed discrete tight wavelet frame transforms to be usefulin applications, we show how the transforms can be computed efficiently andaccurately by proposing the fast tight wavelet frame transforms for graph data(WFTG). Finally, we consider two specific applications of the proposed WFTG:graph data denoising and semi-supervised clustering. Utilizing the sparserepresentation provided by the WFTG, we propose $\ell_1$-norm basedoptimization models on graphs for denoising and semi-supervised clustering. Onone hand, our numerical results show significant advantage of the WFTG over thespectral graph wavelet transform (SGWT) by [1] for both applications. On theother hand, numerical experiments on two real data sets show that the proposedsemi-supervised clustering model using the WFTG is overall competitive with thestate-of-the-art methods developed in the literature of high-dimensional dataclassification, and is superior to some of these methods.
展开▼
机译:在本文中,我们介绍了在连续平面设置(即流形)和离散设置(即在图上)的非平坦域上的紧小波框架的一种新的(构造性)表征。讨论如何快速计算紧小波框架变换以及如何有效地使用它们来处理图形数据。我们首先在给定流形$ \ cM $上定义准仿射系统,该流形由小波函数$ \ Psi:= \ {\ psi_j:1 \ le j \ le r \} \的广义扩张和位移形成子集L_2(\ R)$。我们进一步要求$ \ psi_j $由带有掩码$ a_j $的可精炼函数$ \ phi $生成。我们给出了掩码$ \ {a_j:0 \ lej \ le r \} $所需的条件,以便由$ \ Psi $生成的关联仿射系统是$ L_2(\ cM)$的右框架。然后,我们讨论了如何自然地完成从连续谱(流形)到离散设置(图形)的过渡。为了使所提出的离散紧小波框架变换在应用中有用,我们展示了如何通过以下方法有效而准确地计算变换提出了针对图数据的快速紧小波框架变换(WFTG)。最后,我们考虑了提出的WFTG的两个特定应用:图形数据去噪和半监督聚类。利用WFTG提供的稀疏表示,我们在图上提出了基于$ \ ell_1 $-范数的优化模型,用于去噪和半监督聚类。一方面,对于两种应用,我们的数值结果表明WFTG优于[1]的频谱图小波变换(SGWT)。另一方面,在两个真实数据集上的数值实验表明,使用WFTG提出的半监督聚类模型与高维数据分类文献中开发的最新方法具有总体竞争力,并且优于某些这些方法。
展开▼