首页> 外文OA文献 >Sparse Representation on Graphs by Tight Wavelet Frames and Applications
【2h】

Sparse Representation on Graphs by Tight Wavelet Frames and Applications

机译:紧小波框架在图上的稀疏表示及其应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we introduce a new (constructive) characterization of tightwavelet frames on non-flat domains in both continuum setting, i.e. onmanifolds, and discrete setting, i.e. on graphs; discuss how fast tight waveletframe transforms can be computed and how they can be effectively used toprocess graph data. We start with defining the quasi-affine systems on a givenmanifold $\cM$ that is formed by generalized dilations and shifts of a finitecollection of wavelet functions $\Psi:=\{\psi_j: 1\le j\le r\}\subset L_2(\R)$.We further require that $\psi_j$ is generated by some refinable function $\phi$with mask $a_j$. We present the condition needed for the masks $\{a_j: 0\lej\le r\}$ so that the associated quasi-affine system generated by $\Psi$ is atight frame for $L_2(\cM)$. Then, we discuss how the transition from thecontinuum (manifolds) to the discrete setting (graphs) can be naturally done.In order for the proposed discrete tight wavelet frame transforms to be usefulin applications, we show how the transforms can be computed efficiently andaccurately by proposing the fast tight wavelet frame transforms for graph data(WFTG). Finally, we consider two specific applications of the proposed WFTG:graph data denoising and semi-supervised clustering. Utilizing the sparserepresentation provided by the WFTG, we propose $\ell_1$-norm basedoptimization models on graphs for denoising and semi-supervised clustering. Onone hand, our numerical results show significant advantage of the WFTG over thespectral graph wavelet transform (SGWT) by [1] for both applications. On theother hand, numerical experiments on two real data sets show that the proposedsemi-supervised clustering model using the WFTG is overall competitive with thestate-of-the-art methods developed in the literature of high-dimensional dataclassification, and is superior to some of these methods.
机译:在本文中,我们介绍了在连续平面设置(即流形)和离散设置(即在图上)的非平坦域上的紧小波框架的一种新的(构造性)表征。讨论如何快速计算紧小波框架变换以及如何有效地使用它们来处理图形数据。我们首先在给定流形$ \ cM $上定义准仿射系统,该流形由小波函数$ \ Psi:= \ {\ psi_j:1 \ le j \ le r \} \的广义扩张和位移形成子集L_2(\ R)$。我们进一步要求$ \ psi_j $由带有掩码$ a_j $的可精炼函数$ \ phi $生成。我们给出了掩码$ \ {a_j:0 \ lej \ le r \} $所需的条件,以便由$ \ Psi $生成的关联仿射系统是$ L_2(\ cM)$的右框架。然后,我们讨论了如何自然地完成从连续谱(流形)到离散设置(图形)的过渡。为了使所提出的离散紧小波框架变换在应用中有用,我们展示了如何通过以下方法有效而准确地计算变换提出了针对图数据的快速紧小波框架变换(WFTG)。最后,我们考虑了提出的WFTG的两个特定应用:图形数据去噪和半监督聚类。利用WFTG提供的稀疏表示,我们在图上提出了基于$ \ ell_1 $-范数的优化模型,用于去噪和半监督聚类。一方面,对于两种应用,我们的数值结果表明WFTG优于[1]的频谱图小波变换(SGWT)。另一方面,在两个真实数据集上的数值实验表明,使用WFTG提出的半监督聚类模型与高维数据分类文献中开发的最新方法具有总体竞争力,并且优于某些这些方法。

著录项

  • 作者

    Dong, Bin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号